metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rong-Ming Ma,^a Shao-Fa Sun^a and Feng Bao^b*

^aDepartment of Chemistry and Life Science, Xianning College, Xianning 437005, People's Republic of China, and ^bDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: polymerbaofeng@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.007 Å R factor = 0.060 wR factor = 0.145 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis{N-[(Z)-4-(3-methyl-5-oxo-1-phenyl-1H-pyrazol-4-ylidene)(phenyl)methyl]naphthylamido- $\kappa^2 N,O$ }iron(II)

The Fe^{II} atom in the title compound, $[Fe(C_{27}H_{20}N_3O)_2]$, is *N*,*O*-chelated by two deprotonated 3-methyl-4-[(1-naphthyl-amino)(phenyl)methylene]-1-phenyl-1*H*-pyrazol-5(4*H*)-one ligands in a severely distorted tetrahedral geometry.

Received 16 October 2006 Accepted 26 October 2006

Comment

The crystal structure of the N-[(Z)-4-(3-methyl-5-oxo-1phenyl-1*H*-pyrazol-4-ylidene)(phenyl)methyl]naphthylamide ligand (*L*) in the title compound, (I), has previously been determined (Wang *et al.*, 2003); it also forms a bis-chelated nickel(II) complex (Bao *et al.*, 2006), Ni(C₂₇H₂₀N₃O)₂-(C₂H₆O)₂, in which two solvent molecules of ethanol also coordinate to the metal ion to complete a slightly distorted *cis*-NiN₂O₆ octahedral coordination environment.

In compound (I), the Fe coordination, which involves only the L ligands, is intermediate between square planar and tetrahedral and could be described as severely compressed tetrahedral (Fig. 1 and Table 1) with both deprotonated, monoanionic ligands showing N,O-chelation to result in stable, six-membered chelate rings (-Fe-O-C-C-C-N-) with the ligand presumably showing electron delocalization. Short intramolecular $C-H\cdots O$ interactions may help to establish the molecular conformation and the crystal packing may be assisted by an intermolecular $C-H\cdots N$ interaction (Table 2).

Experimental

Iron(II) chloride (6.3 mg, 0.05 mmol) dissolved in ethanol (5 ml) was added to a chloroform (5 ml) solution of 3-methyl-4-[(1-naphthyl-amino)(phenyl)methylene]-1-phenyl-1*H*-pyrazol-5(4*H*)-one (Wang *et al.*, 2003) (40 mg, 0.1 mmol) and triethylamine (14 ml, 0.1 mmol). The brown mixture was filtered and the solution set aside for several

© 2006 International Union of Crystallography All rights reserved days to give red crystals of (I) in about 75% yield. Analysis calculated for $C_{54}H_{40}FeN_6O_2$: C 75.35, H 4.68, N 9.76%; found: C 75.28, H 4.66, N 9.78%.

Z = 4

 $D_{\rm v} = 1.325 {\rm Mg m}^{-3}$

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

31464 measured reflections

9368 independent reflections

4102 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0538P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.40 \text{ mm}^{-1}$

T = 292 (2) K

Block, red

 $R_{\rm int} = 0.123$

 $\theta_{\rm max} = 27.0^{\circ}$

Crystal data

 $\begin{bmatrix} \text{Fe}(\text{C}_{27}\text{H}_{20}\text{N}_3\text{O})_2 \end{bmatrix} \\ M_r = 860.77 \\ \text{Monoclinic, } P2_1/c \\ a = 13.1106 (9) \text{ Å} \\ b = 19.6822 (13) \text{ Å} \\ c = 16.8314 (11) \text{ Å} \\ \beta = 96.627 (2)^\circ \\ V = 4314.2 (5) \text{ Å}^3 \end{bmatrix}$

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{min} = 0.924, T_{max} = 0.961$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.145$ S = 0.829368 reflections 570 parameters

Table 1

Selected geometric parameters (Å, °).

Fe1-O2	1.907 (2)	Fe1-N1	1.976 (3)
Fe1-O1	1.933 (2)	Fe1-N2	1.982 (3)
O2-Fe1-O1	149.08 (11)	O2-Fe1-N2	98.85 (12)
O2-Fe1-N1	94.56 (12)	O1-Fe1-N2	92.48 (11)
O1-Fe1-N1	97.24 (11)	N1-Fe1-N2	135.56 (13)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C27-H27···O2	0.93	2.34	2.928 (5)	121
C50-H50···O1	0.93	2.28	2.924 (5)	126
$C48-H48A\cdots N3^{i}$	0.96	2.59	3.504 (5)	160
Summature and a (i)	1.2	1		

Symmetry code: (i) -x + 2, -y, -z + 1.

Because of the poor quality of the crystals, a rather high value of R_{int} was obtained. We tried to obtain better quality crystals, but were unsuccessful. All H atoms were positioned geometrically (C-H = 0.93 and 0.96 Å) and refined as riding with $U_{\text{iso}}(\text{H}) = xU_{\text{eq}}(\text{C})$, where x = 1.5 for methyl groups and x = 1.2 for all other H atoms.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

Support by the Education Bureau of Hubei Province (project D2006-28004) and the Technologies R&D Programme of Hubei Province (projects 2005 A A401D57, 2006 A A101C39) is gratefully acknowledged.

References

Bao, F., Ma, R., Lv, X.-Q., Gui, G.-Q. & Wu, Q. (2006). Appl. Organomet. Chem. 20, 32–38.

- Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, J.-L., Zhang, S.-M. & Li, A.-X. (2003). Pol. J. Chem. 77, 1053-1058.